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Electrophysiological experiments in microgravity: lessons
learned and future challenges
Simon L. Wuest 1,2, Benjamin Gantenbein2, Fabian Ille 1 and Marcel Egli1

Advances in electrophysiological experiments have led to the discovery of mechanosensitive ion channels (MSCs) and the
identification of the physiological function of specific MSCs. They are believed to play important roles in mechanosensitive
pathways by allowing for cells to sense their mechanical environment. However, the physiological function of many MSCs has not
been conclusively identified. Therefore, experiments have been developed that expose cells to various mechanical loads, such as
shear flow, membrane indentation, osmotic challenges and hydrostatic pressure. In line with these experiments, mechanical
unloading, as experienced in microgravity, represents an interesting alternative condition, since exposure to microgravity leads to a
series of physiological adaption processes. As outlined in this review, electrophysiological experiments performed in microgravity
have shown an influence of gravity on biological functions depending on ion channels at all hierarchical levels, from the cellular
level to organs. In this context, calcium signaling represents an interesting cellular pathway, as it involves the direct action of
calcium-permeable ion channels, and specific gravitatic cells have linked graviperception to this pathway. Multiple key proteins in
the graviperception pathways have been identified. However, measurements on vertebrae cells have revealed controversial results.
In conclusion, electrophysiological experiments in microgravity have shown that ion-channel-dependent physiological processes
are altered in mechanically unloaded conditions. Future experiments may provide a better understanding of the underlying
mechanisms.
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INTRODUCTION
Living organisms strongly adapt to their daily mechanical load,
and cells have shown responses to various mechanical stimuli in
in-vitro experiments.1–7 However, it is still not fully understood
how cells transform mechanical stimuli into biological responses.
Among other mechanisms, mechanosensitive ion channels (MSCs)
are thought to be key players (reviewed in refs. 3,5,7–10). Advances
in electrophysiological experiments have shown that multiple
mechanically induced physiological responses involve the activa-
tion of specific ion channels. However, the physiological function
is not clear for many identified MSCs.11–13 Vice versa, multiple
physiological functions are thought to rely on MSCs, but the pore-
forming protein could not be identified.14 Various in-situ electro-
physiological experiments have been developed to elucidate
these unknowns. In this context, microgravity platforms have
revealed interesting results: They allow for the study of biological
processes in a mechanically unloaded condition. Furthermore,
exposure to microgravity leads to a series of physiological
adaption processes (reviewed in refs.15–17).
This review article outlines electrophysiological experiments

performed in microgravity. After a general introduction to the
mechanosensitivity of ion channels, various electrophysiological
experiments conducted on multiple microgravity platforms are
summarized. These experiments have shown an influence of
gravity on all hierarchical levels of organization, from the cellular
level to the organ. Furthermore, the gravitational effects on
calcium signaling are discussed. The findings indicate that, despite

the technical challenges, such experiments help to better under-
stand how mechanical forces affects electrophysiological
mechanisms.

MECHANOSENSITIVITY OF ION CHANNELS
Patch clamping electrically isolates an area of the cell’s membrane
and enables electrophysiological recordings with high special
resolution.18 Many MSCs have been discovered by aspiring a
membrane patch with a glass micro-pipette and stretching it by
suction (reviewed in ref. 19). MSCs (also referred as stretch
activated channels) are characterized by their conformational
change in response to mechanical load and the resulting
transition into an open or closed state (reviewed in ref.20). MSCs
are believed to play important roles in mechanosensitive path-
ways, allowing for cells to sense their mechanical environment
(reviewed in refs. 3,5,7–10).
Along with the increasing numbers of identified mechanosen-

sitive ion channels,11,21,22 the elucidation of the physiological
function of specific MSCs has also progressed. For instance, the
bacterial large conductance mechanosensitive channel (MscL) and
small conductance mechanosensitive channel (MscS) are activated
by membrane tension just below rupture tension of the lipid
bilayer. Thereby, they function as “pressure relieve valves” and
protect the cell from lysis in case of extreme osmotic swelling,
such as after rainfall.1,23–27 MEC-4 (a member of the DEG/ENaC
family) was identified as a mechanotransducer in Caenorhabditis
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elegans. External force activates mechanoreceptor currents in the
touch receptor neurons.28 Similar, MSCs in the dorsal root ganglia
of sensory neurons in vertebrates are activated by mechanical
stimuli, thereby converting the mechanical stimuli into an
electrical signal. Piezo2 and TRPA1 (transient receptor potential
cation channel, first member in the ankyrin subfamily) are among
the potential MSC candidates (reviewed in ref. 29). Additionally, in
the inner ear of mammals, mechanically sensitive hair bundles
protruding apically from hair cells transduce auditory and
vestibular stimuli. Bundle deflection caused by sound-induced
vibrations (auditory) or movement of the overlying otolithic
membrane (vestibular) directly opens cation-permeable MSCs in
the hair cell (reviewed in ref. 14). However, the pore-forming
protein could not be fully identified.30

Currently, four eukaryotic channel families are thought to
contain mechanosensitive members: the degenerin/epithelial
sodium channels (DEG/ENaC), transient receptor potential chan-
nels (TRP), two-pore-domain potassium channels (K2P) and MscS-
like channels (reviewed in refs.10,11). “MSCs are extremely diverse
at a molecular level”19 and no “force-sensing domain” could be
identified yet.21 For many MSCs it is unclear how the channel is
coupled with the mechanical force, which is the subject of
ongoing research. Some specific channels are thought to be
linked either directly or indirectly to the cytoskeleton or the
extracellular matrix. Other channels are believed to interact only
with the surrounding lipids (reviewed in refs.19–21,31,32). For the
latter channels, the channel-gating mechanism could be deter-
mined by the membrane properties, lipid mismatches and far-field
tension (reviewed in ref.19–21). The properties of the lipid bilayer
are known to respond to various changing conditions such as
temperature,33 deformation,34 pH,35 specific ions,36 and gravity.37

The physiological function of many ion channels that have been
identified to be mechanosensitive is still unknown.11 To add
further complexity, various MSC channels can be activated
through multiple pathways (reviewed in22). TRPC1 (transient
receptor potential channel 1), for instance, is thought to be
activated by the depletion of intracellular calcium-stores (store-
operated calcium influx), through interactions with inositol 1,4,5-
trisphosphate receptors (IP3Rs) or mechanically (stretch activated;
reviewed in ref. 38). Likewise, TRPV4 (transient receptor potential
cation channel, the fourth member in the vanilloid subfamily) is
activated in response to hypotonic environments, membrane
stress and moderate heat (24–38 °C; reviewed in ref. 39). One
reason why the physiological function of many MSCs is unknown
is because their mechanosensitivity has been detected in patch-
clamping experiments with highly stressed plasma membranes.20

However, the cell membrane is thought to be relaxed under
normal physiological conditions.40 Therefore, some channels that
are considered to be MSCs might not belong to a physiological
force-sensing system at all. Yet, some channels that are not
considered to be MSCs are also known to be sensitive to
membrane stretch. The voltage-dependent K+ channel (Kv), for
instance, shows sensitivity to small mechanical perturbations of
the membrane.41 Therefore, sensitivity to membrane tension
could be a much more general property than commonly
thought.21

Various experiments have been developed to determine the
physiological function of MSCs, which have exposed cells to
various mechanical loads in situ. In such electrophysiological
experiments, cells have been exposed to cell stretch,42–45 shear
flow,46–48 membrane indentation,49–51 osmotic challenges,52,53

hydrostatic pressure54–56 and other loading conditions. In line with
these experiments, mechanical unloading, as experienced in
microgravity, represents an interesting condition, since exposure
to microgravity leads to a series of physiological adaption
processes (reviewed in refs. 15–17).

ELECTROPHYSIOLOGICAL EXPERIMENTS IN MICROGRAVITY
Effects at the cellular and tissue levels
A number of electrophysiological experiments have been
conducted in microgravity conditions. They have demonstrated
that microgravity influences biological functions depending on
electrophysiological properties at all levels of the hierarchical
organization, from the membrane to the whole system (Fig. 1).
Plain lipid membranes and membranes of the human neuroblas-
toma cell line SH-SY5Y become more fluid (lower viscosity) with
decreasing gravity during parabolic flights.37 By applying high
electrostatic potentials across plain lipid membranes (>100mV),
current fluctuations can be induced (reviewed in refs.57). This
membrane conductance was reduced at lower gravity levels
(during parabolic flight). The authors speculated that the
increased membrane fluidity in microgravity could accelerate
the repair of membrane structure defects.58 In the same
experiment, the electrical capacity of plain lipid vesicles was
slightly higher in hypergravity and microgravity. However, the
authors could not rule out that the effect was due to changes in
membrane geometry.58

As discussed above, the properties of lipid membranes could
directly affect the kinetics of ion channels (see section “Mechan-
osensitivity of ion channels”). One could therefore expect gravity
to influence specific ion channels as well. An early experiment on
liposome-reconstituted cardiac gap junctions did not show altered
channeling activity during parabolic flights.59 Later experiments
showed that the open-state probability of porins isolated from
Escherichia coli and incorporated into planar lipid bilayers
decreased under microgravity and increased under hypergravity.60

Also, alamethicin, an artificial pore-forming polypeptide, shows
reduced activity under microgravity and hypergravity.60–62

Furthermore, native oocytes from Xenopus laevis, as well as
oocytes that overexpress epithelial sodium channels (ENaC),
demonstrate reduced membrane conductivity under microgravity
and increased conductivity under hypergravity (in parabolic
flights).63,64 Ion channels are the key mediators of electric resting
and action potentials (APs) in excitable cells. Neuronal cells (from
the neuroblastoma cell line SH-SY5Y) hyperpolarized under higher
gravity and depolarized under microgravity (parabolic flights).65

Likewise, insect neurons (SF21) depolarized in microgravity (drop
tower experiment).66 AP kinetics are gravity dependent as well.
The AP propagation velocity appeared to decrease under
microgravity conditions and increased under hypergravity condi-
tions in intact earthworms and isolated axons of rats and
earthworms.67 The frequency of spontaneously spiking neurons
in leeches increased in microgravity during a drop tower
experiment.67 In agreement, excitable tissue is affected by gravity
as well. Spreading depression (SD) waves in neuronal tissue are
depolarization waves that are followed by a refractory period. The
velocity of SD waves of retinal eyecups from chickens was slower
under microgravity and faster under hypergravity (parabolic
flights and centrifuges).68–71 However, the SD waves were faster
during a sounding rocket mission (TEXUS).68 The authors
speculated that a possible adaptation effect from the launch
could have been the reason for this disagreement.

Effects at the organ and system levels
Microgravity-induced effects have also been observed at the
organ and systemic levels. Stimulating the posterior tibial nerve
leads to involuntary and nearly instantaneous muscle contractions
(neuromuscular reaction) of the soleus muscle.72,73 Experiments
during parabolic flights “indicated that synaptic and axonal nerve
conduction velocity, as well as axonal and spinal excitability are
diminished with reduced gravitational forces […] and increased
[…] in hypergravity”.73 Kohn and Ritzmann reviewed the influence
of gravity on neuromuscular systems in more detail.74
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Multiple measurements on brain activity (electroencephalogra-
phy, EEG) have been conducted under reduced-gravity conditions
on animals and human subjects. Rats showed reduced neuronal
activity in the subthalamic cerebrovasodilator area, a key area in
controlling cerebral blood flow, in low-gravity conditions (para-
bolic flight).75 Recordings of the slow cortical potential (SCP)
during parabolic flights showed that the SCP shifted in a positive
direction for 4 out of 9 subjects during microgravity. A negative
shift during microgravity was recorded for 3 of the subjects, and
no significant reaction could be detected for 2 of the subjects. A
positive shift of the DC potential indicates lower excitability of the
central nervous system and inhibition of the cortical network.76

EEG recordings from a passenger in an aerobatic plane performing
parabolic maneuvers showed decreased intracranial activity
during the microgravity phase with both open and closed eyes.
Statistically significant differences could be detected in the left
occipital lobe and the right temporal lobe.77,78

Frequency band analyses of EEGs recorded in microgravity have
revealed controversial results. The power of the spontaneous mu
and alpha rhythms (8–12 Hz) recorded in the eyes-closed state
increased in microgravity. The experiments were conducted over
the course of three space flights.79,80 Beta-2 EEG activity (18-35 Hz)
in the right superior frontal gyrus was inhibited in microgravity
during parabolic flights.81 The same group also found an increase
in brain activity inflight as compared to preflight. They interpreted
this as a sign of increase in arousal due to the uncommon
environment inflight.82 Another group also found a decrease in
beta amplitude in microgravity on 9 subjects during parabolic
flights, which indicated a lower arousal in microgravity.76 Marušič
et al. reviewed the effects of various gravity levels on the brain
(EEG recordings).83

Several astronauts have experienced heart rhythm disturbances
during space flight missions. However, it was not clear if these
arrhythmias were caused by microgravity or a stressful psycho-
logically situation (reviewed in ref. 84).

GRAVITATIONAL EFFECTS ON CALCIUM SIGNALING
Introduction to calcium signaling
In the context of electrophysiological experiments performed in
microgravity, calcium signaling represents an interesting pathway:
(1) Calcium signaling involves the direct action of calcium-
permeable ion channels. (2) Specific gravitactic cells have linked
gravitropism to calcium signaling.
Calcium (Ca2+) is a ubiquitous intracellular signal responsible for

controlling numerous cellular processes, including the cell cycle,
proliferation, differentiation, apoptosis and cytoskeletal remodel-
ing (reviewed in refs.85,86). The concentration of free Ca2+

in cytosol is tightly regulated by the combined action of channels,
buffers, pumps and exchangers.87 At rest, the cytosolic Ca2+

concentration is around 100 nM. During Ca2+ signaling, the free
Ca2+ in the cytosol transiently increases to roughly 1000 nM
(reviewed in ref. 86). The principle Ca2+ sources during Ca2+

signaling are the extracellular environment and internal Ca2+

stores (primarily located in the endoplasmic or sarcoplasmic
reticulum). Specific Ca2+-permeable ion channels (transiently)
open and allow Ca2+ ions to rush into the cytosol, along the
electrochemical gradient (reviewed in ref.87). From the inflowing
Ca2+, only a very small quantity ends up as free Ca2+. Most of it is
rapidly sequestered by Ca2+ buffers and effectors (reviewed in ref.
87). Generally, Ca2+ ions quickly encounter a binding protein and
do not diffuse far (around 0.1–0.5 μm).88,89 Therefore, Ca2+

signaling can be extremely localized (reviewed in ref.89). Each cell
type expresses a unique set of proteins to create a Ca2+ signaling
system with different spatial and temporal properties (reviewed
in refs. 86,87). Since several Ca2+-permeable ion channels have
been shown to be sensitive to mechanical load, it is speculated
that mechanical load could very well interfere with Ca2+

signaling.85

Fig. 1 Effect of microgravity on cellular and organ functions that depend on ion channels. Gravity affects ion-channel-dependent
physiological functions at all level of organization, from the membrane and the channels to the whole organism (left column). The middle
column indicates microgravity induced effects and the right column indicate the specimen in which these effects have been observed. The
images (left column) illustrate representative structures of microgravity exposed specimens
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Calcium signaling in gravitaxis
Graviperception is linked to Ca2+ signaling in specific gravitatic
organisms, such as Euglena and Arabidopsis thaliana. The
unicellular algae Euglena migrate vertically in the water column
to an optimal position. Besides being phototactic, Euglena show
an evidently negative gravitaxis (swimming against the gravity
vector). Euglena are slightly denser than their surrounding water.
The gravity-induced pressure of the whole cell body activates
specific Ca2+-permeable MSCs at the front end of the cell.90,91 A
transient receptor potential-like (TRP) channel has been identified
as the presumable MSC.92 The entering Ca2+ binds to a specific
calmodulin,93 which then activates cAMP-producing adenylyl
cyclase.94 The cAMP subsequently activates a specific protein
kinase A,95 which is thought to phosphorylate proteins inside the
flagellum, resulting in a corrected swimming direction (reviewed
in96,97). Accordingly, Euglena gracilis showed a transient Ca2+

signal when going from lower to higher accelerations during
parabolic flights.98,99 During a sounding rocket flight (MAXUS 3)
with an inflight centrifuge, Euglena longa showed an intermediate
Ca2+ fluorescence signal in microgravity. The signal increased
steeply with increasing acceleration by centrifugation.100 Also, the
unicellular algae Astasia showed an increase in Ca2+ signal upon
acceleration and a decrease in microgravity conditions during a
sounding rocket experiment (MAXUS 3).101 Gravitaxis of Euglena
has been reviewed in detail by Häder et al.96,97

Gravity sensing is thought to be mediated by Ca2+ in higher
plants as well.102–107 However, the molecular mechanisms are not
well understood.103,108 Gravity stimulation by parabolic flight
induced a delayed increase in cytosolic Ca2+ in A. thaliana
seedlings. Isolated A. thaliana cells showed an increase in
intracellular Ca2+ concentration under low gravity and a decrease
under hypergravity (parabolic flight).109,110

Calcium signaling in cells of vertebrates
Recordings of the intracellular concentrations of free Ca2+ in
animal cells under various gravitational loads have revealed
controversial results so far. The intracellular Ca2+ concentration of
neuronal cells decreased under microgravity during a drop tower
experiment.111 In contrast, the intracellular Ca2+ concentration
increased in a human neuroblastoma cell line (SH-SY5Y) under
hypergravity and microgravity during a parabolic flight, which was
believed to be due to a memory or hysteresis effect resulting from
an increased Ca2+ concentration during the hypergravity
phase.112 Still, recent data from the same human cell line (SH-
SY5Y, undifferentiated state) showed that intracellular Ca2+

concentration increased under lower gravity and decreased under
higher gravity (parabolic flight).113 Furthermore, findings by our
group have shown that a microgravity-induced shift in free Ca2+ is
cell-cycle dependent in mammalian cells (parabolic flight; pub-
lication in preparation). In a pilot study on native Xenopus laevis
oocytes, a Ca2+-dependent current tended to be smaller under
microgravity than under 1 g conditions (parabolic flight).114

METHODS USED IN ELECTROPHYSIOLOGICAL MICROGRAVITY
EXPERIMENTS
Taken together, only limited numbers of electrophysiological
experiments, especially at the cellular or subcellular level, have
been conducted in microgravity conditions. In addition to limited
access to microgravity platforms, classical electrophysiological
techniques require delicate micromanipulation, which is not
compatible with the high mechanical load generated on
microgravity platforms. An attempt to use classical patch clamping
in parabolic flights was discontinued because the aircraft’s
vibrations frequently destroyed the patch and the recorded data
had a poor signal-to-noise ratio.66 Even the mechanical dis-
turbance caused by the release of the capsule in drop tower

experiments was enough to destroy the patch. Only 3 out of 16
drops were successful during a previous drop tower campaign.67

An attempt to fly Xenopus laevis oocytes on a sounding rocket
failed due to the high mechanical load during launch.115 Parabolic
flight experiments with a two-electrode voltage clamp (TEVC) on
Xenopus laevis oocytes have been discontinued due to practical
manipulation difficulties. The oocytes were impaled with two
micro-pipettes under a microscope in flight.63 Therefore, robust
setups are required that need little micromanipulation. An
adapted and non-invasive macro patch-clamp technique was
used successfully on Xenopus laevis oocytes during parabolic
flights.64,114 Also, the Port-a-Patch device from Nanion Technol-
ogies GmbH (Munich, Germany), employing a planar patch-clamp
technique, was successfully used on a glioblastoma cell line
(SNB19) during parabolic flights.116 Both setups require only
simple in-flight manipulations and do not require a microscope.
Voltage-sensitive or Ca2+-sensitive fluorescent dyes, which were
recorded by optical means, have been successfully used multiple
times.98,101,111–113 However, cytotoxicity, dye internalization and
photo bleaching can limit the duration of the experiment.117 For
instance, Meissner et al. reported degeneration of the cells while
evacuating the drop tube in drop tower experiments.111

The extensive work identifying the molecular mechanisms
responsible for gravitaxis in Euglena (see section “Calcium
signaling in gravitaxis”), is a good example that microgravity
experiments start on ground. By using pharmaceutical blockers
and ionophores, it was shown that Ca2+ signaling is involved in
gravitactic orientation (reviewed in ref. 97). Experiments employing
the Ca2+-dependent fluorescent dye Calcium Crimson showed an
increase in free Ca2+, during the reorientation of the cells along
the gravity vector. Microscopic visualizations revealed a bright
fluorescent signal at the front of the cell, indicating the location of
the Ca2+-permeable channels.90 The responsible MSC could later
be identified by selective gene expression knockdown, using RNA
interference (RNAi).92 As described previously, multiple experi-
ments on Euglena, and similar organisms, were conducted during
parabolic flights and sounding rocket missions. For these
experiments voltage-sensitive or Ca2+-sensitive fluorescent dyes
were successfully employed.98–101 The work on entangling the
molecular pathway responsible for gravitaxis in Euglena (reviewed
in refs. 96,97) illustrates that we now have the tools to accomplish
such challenges. Especially fluorescent probes in combination
with an optical system proved to be useful tools on microgravity
platforms.

CONCLUSION AND OUTLOOK
The results of the successful experiments suggest that gravity
influences cellular and organ functions depending on ion
channels. Generally speaking, it seems that the open-state
probability of ion channels is lower and the kinematics is slower
in low-gravity conditions. This could indicate that sensitivity to
mechanical load could be a rather general property of ion
channels. Since the channel-gating properties may be directly
influenced by the membrane properties19–21, which are also
gravity dependent,37 the membrane might be the primary
structure of a cellular gravity-sensitive system. How gravity affects
Ca2+ signaling in animal cells remains unclear. Since several Ca2
+-permeable ion channels are also mechanosensitive85 and Ca2+

signaling is involved in the graviperception of specific plants,
gravity might interfere with Ca2+ signaling in non-specialized cells
as well.
Many of the performed experiments have been “black box”

experiments that did not allow mechanosensitive molecular
identities to be identified. Recent advances in engineering (e.g.,
automation, micro technology, and fast data acquisition) and
molecular biology (e.g., pharmaceutical substances, reporter dyes,
siRNA and genetic manipulation) will provide a promising toolkit
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for developing even more advanced experiments. In our opinion,
future studies may be aimed at identifying the molecular
mechanisms responsible for the rapid physiological adaptations
seen in unloaded conditions.15–17 As compared to classical “rinse-
and-fix” type studies,118 electrophysiological experiments allow
living cells to be observed continuously and in real time. This is a
major advantage when experimenting on microgravity platforms,
since transitions to hyper-, micro- or normal gravity can be directly
observed.
Experiments in the mechanically unloaded condition of

microgravity have revealed important and sometimes surprising
results. Even though gravity becomes a very small force at the
cellular or subcellular level, multiple experiments have shown that
microgravity greatly influences the function of isolated cells.17,118–
122 However, to date it is unclear whether cells sense microgravity
directly or indirectly. In microgravity, all gravity-dependent
physical processes are altered and thus, sedimentation (and
buoyancy), hydrostatic pressure difference and convection are
(almost) absent in a static cell culture system. This changes the
microenvironment of a living cell, which might influence its
normal behavior.123 In previous reviews on gravitational cell
biology, scientists argued that nonspecialized cells are unable to
sense unit gravity. At the cellular level, gravitational forces are
much smaller than other forces such as electrical forces, thermal
noise and chemical energies.123 Therefore, the response of
microgravity exposed cells, must be the result of an altered
microenvironment. However, in the light of the before discussed
results, this view may have to be challenged. Almost instanta-
neous responses to microgravity observed on membranes, ion
channels and isolated cells are unlikely to be triggered by reduced
sedimentation or convection.
As discussed in this review, the sensitivity of ion channels to

mechanical load may not be limited to MSCs but could be a rather
general property.21 In fact, mechanosensitivity might be a general
property at the molecular level. For instance, many of the enzymes
and substrates involved in DNA synthesis, RNA processing, protein
synthesis and glycolysis are only functional when immobilized on
insoluble scaffolds (reviewed in refs.124,125). Even the lifetime of
non-covalent bonds decreases under force.126 Surprisingly, the
molecular processes of microtubule self-organization in a cell-free
system also appear to be gravity dependent.127–129 In conclusion,
electrophysiological experiments in microgravity have shown that
ion-channel-dependent physiological processes are altered in a
mechanically unloaded condition. Future experiments shall be
aimed at better understanding the underlying mechanisms.
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